Na początku zeszłego roku Roger Reeves i zespół z Uniwersytetu Johnsa Hopkinsa zauważyli, że u myszy potrojony gen Ets2 hamuje tworzenie się guza. Nie było jednak wiadomo, jak do tego dochodzi. Nieco później Sandra Ryeom ze Szpitala Dziecięcego w Bostonie i jej współpracownicy wpadli na trop innego genu. W jego przypadku w grę wchodził jasny mechanizm oddziaływania. Zgodnie z wynikami wcześniejszych badań, DSCR1, znany też jako RCAN1, koduje białko, które hamuje angiogenezę (neowaskularyzację), czyli proces tworzenia się naczyń krwionośnych. Zachodzi ona podczas rozwoju zmiany nowotworowej, dlatego onkolodzy starają się ją zablokować. Członkowie ekipy Ryeom zastanawiali się, czy podobne zjawisko zachodzi u osób z zespołem Downa.
Amerykanie badali płody poddane aborcji. Sprawdzali, czy u tych z trisomią 21. chromosomu DSCR1 był nadaktywny. Okazało się, że tak, a stężenie kodowanego przez gen białka było 1,8 razy wyższe niż zwykle. Wiedząc to, naukowcy stworzyli gryzonie z dodatkową wersją mysiego genu Dscr1. Nadprogramowa kopia tylko tego jednego genu zahamowała angiogenezę i wzrost przeszczepionych guzów.
Mysie geny Dscr1 i Ets2 działają inaczej. Ten drugi wkracza do gry na wcześniejszych etapach, kiedy guz nie jest jeszcze na tyle duży, by inicjować neowaskularyzację. Wydaje się, że ochronę mogą też zapewniać inne potrojone geny, na razie nie wiadomo jeszcze jakie.
Autor: Anna Błońska
źródło: Kopalnia Wiedzy